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We study the metastability of the superheated Meissner state in type II superconductors with ��1 beyond
Ginzburg-Landau theory, which is applicable only in the vicinity of the critical temperature. Within Eilenberg-
er’s semiclassical approximation, we use the local electrodynamic response of the superconductor to derive a
generalized thermodynamic potential valid at any temperature. The stability analysis of this functional yields
the temperature dependence of the superheating field. Finally, we comment on the implications of our results
for superconducting cavities in particle accelerators.
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I. INTRODUCTION

The Meissner effect—the expulsion of a weak magnetic
field from a bulk superconductor—is one of the hallmark of
superconductivity. As the field is increased, the response of a
superconductor depends on the value of the Ginzburg-
Landau �GL� parameter �=� /�, where � and � are the
magnetic-field penetration depth and the superconducting co-
herence length, respectively. Type I superconductors ��
�1 /�2� usually turn normal at the thermodynamic critical
field Hc, but superconductivity can be maintained, as a meta-
stable state, up to the superheating field Hsh�Hc. As for type
II superconductors ���1 /�2�, above the first critical field
Hc1 their stable state is characterized by the presence of vor-
tices, and superconductivity persists up to the second critical
field Hc2. However, since the work of Bean and Livingston1

it is known that an energy barrier at the surface impedes the
penetration of vortices into the bulk, making it possible for
the Meissner state to exist as a metastable state up to a su-
perheating field Hsh�Hc1. Therefore Hsh is a characteristic
property of both types I and II superconductors. In this paper
we consider the temperature dependence of the superheating
field in strong type II superconductors with ��1—i.e., in
the London �or local� limit.

Over the years the issue of the stability of the superheated
Meissner state has received much attention. The simplest
system in which this problem can be studied is a clean su-
perconductor occupying a half space with a magnetic field
applied parallel to the surface. For this system in the strong
type II limit, and assuming that the instability is due to fluc-
tuations in the direction perpendicular to the surface �i.e.,
one-dimensional fluctuations�, de Gennes2 calculated the su-
perheating field Hsh=Hc near the critical temperature Tc. If
the instability signals the penetration of vortices, however,
the relevant fluctuations can be expected to vary along two
dimensions while preserving translational invariance along
the field direction. Galaiko3 showed that this is indeed the
case and near Tc the actual superheating field is smaller than
that found by de Gennes, Hsh�0.745Hc. More details about
the critical fluctuations were presented by Kramer,4,5 espe-
cially in relation to the problem of vortex nucleation. The
question of metastability has also attracted the interest of the

mathematical community,6 and a detailed study of the insta-
bility due to one-dimensional fluctuations in type II super-
conductors was presented in Ref. 7. A similar analysis was
performed for type I superconductors in Ref. 8, in which the
results of earlier numerical9,10 and analytical11 investigations
are confirmed and extended.

It is interesting to note that all the previous calculations of
the superheating field were performed within the GL theory
�with the exception of Ref. 3 in which the zero-temperature
limit is also considered�. This approach, however, is justified
only near the critical temperature �i.e., if Tc−T�Tc�, and a
quantitative evaluation of the superheating field at low tem-
peratures requires the use of the microscopic theory of su-
perconductivity. Understanding the temperature dependence
of the superheating field is important for practical applica-
tions; the maximum accelerating field of superconducting
cavities used in particle accelerators is limited by the super-
heating field12 and the optimal operational temperature lies
well below Tc.

13

In this work we consider, within the semiclassical ap-
proach of Eilenberger,14 a clean type II superconductor oc-
cupying the half space x�0 in the presence of an external
magnetic field Ha parallel to the surface. We derive an ex-
pression for the thermodynamic potential valid at any tem-
perature for ��1, which enables us to calculate the tempera-
ture dependence of the superheating field. As a result we find
that in the limit �→ +� the ratio Hsh /Hc between superheat-
ing and thermodynamic critical fields is a nonmonotonic
function of temperature which has a maximum at T
�0.06Tc.

This paper is organized as follows: in Sec. II we briefly
review the semiclassical theory of superconductivity and in-
troduce our notation, while the derivation of the thermody-
namic potential is presented in Sec. III. The conditions for
the �meta�stability of the Meissner state are discussed in Sec.
IV, and the superheating field is calculated in Sec. V. In Sec.
VI we discuss the implications of our results for accelerator
applications, and a brief summary is given in Sec. VII.

II. SEMICLASSICAL THEORY

In the semiclassical approach to superconductivity the su-
perconducting system is described by the set of equations,
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the so-called Eilenberger equations, which are valid at any
temperature15 under the assumption that the Fermi wave-
length �F is the smallest length scale characterizing the sys-
tem. In practice this means that the semiclassical approxima-
tion usually applies to low-Tc superconductors, in which the
zero-temperature coherence length �0��F. This condition
also implies the applicability at magnetic fields as high as
Hc2. This technique is widely used to study the properties of
hybrid superconducting devices; see, e.g., Ref. 16. From now
on, we will use units such that Boltzmann constant kB=1 and
the Planck constant 	=1.

The Eilenberger equations are equations for the anoma-

lous Green’s functions f�
n ,n ,r� and f̄�
n ,n ,r�, which de-
pend on the Matsubara frequencies 
n=2�T�n+1 /2�, the
position r, and the unit vector n on the Fermi surface,

�
n + n · ��− iA�r��	f�
n,n,r� = ��r�g�
n,n,r� ,

�
n − n · �� + iA�r��	 f̄�
n,n,r� = �†�r�g�
n,n,r� , �1�

where the dagger denotes complex conjugation. The �nor-

mal� Green’s function g�
n ,n ,r� is related to f and f̄ via the
constraint �suppressing all the arguments for brevity�

g2 + f f̄ = 1. �2�

These equations are to be solved together with the self-
consistent equation for the complex order parameter ��r�
and the Maxwell equation relating the magnetic field to the
�super�current,

��r�log
T

Tc
+ 2�T


n
���r�


n
−� dn

4�
f�
n,n,r�
 = 0, �3�

� 
 H + i
1

�0
22�T


n
� dn

4�
3ng�
n,n,r� = 0, �4�

with H=�
A.
In Eqs. �1�–�4� we used as the unit of length the zero-

temperature BCS coherence length

�0 =
vF

2�0
, �5�

where vF is the Fermi velocity and �0 is the zero-
temperature zero-field order parameter, which gives the en-
ergy unit. The vector potential A is rescaled by �0 /2��0 and
the magnetic field H by �0 /2��0

2, with �0=�c /e as the flux
quantum. These choices of units render all quantities dimen-
sionless; for example, the BCS critical temperature is Tc
=e�E /��0.567, where �E is Euler’s constant. Finally, the
dimensionless parameter �0, the only independent parameter
remaining after the units are chosen, is defined in analogy
with the GL parameter � as

�0 =
�0

�0
, �6�

where the zero-temperature penetration depth is

1

�0
2 =

8�

3
�2��0

�0
�2

��0
2, �7�

with � as the density of states at the Fermi energy.
In writing Eq. �1� higher-order terms in the magnetic field

are neglected which give rise to diamagnetic effects.17 This is
a good approximation if


c � T , �8�

where 
c=eH /mc is the cyclotron frequency. This condition
can be rewritten as

�F

�0

1

�0

H

Hc�0�
�

T

Tc
. �9�

In low Tc, strong type II superconductors, the first two fac-
tors on the left-hand side are both small parameters. In what
follows we consider magnetic fields H smaller than the zero-
temperature critical field Hc�0�; therefore, this approximation
is justified down to very low temperatures.18

III. THERMODYNAMIC POTENTIAL

Equations �1�, �3�, and �4� are the Euler-Lagrange equa-
tions obtained by varying the following functional14 with re-

spect to f̄ and f , �†, and A, respectively:

� = �� d3r��0
2

3
�H�r� − Ha�2 + ���r��2 log� T

Tc
�

+� �dn�� ���r��2


n
− �†�r�f − f̄��r� − 2
n�g − 1�

− gn · �� log
f

f̄
− 2iA�r��
� , �10�

with g as implicitly defined by Eq. �2�, Ha as the applied
field which we assume uniform, and

� �dn� � 2�T

n
� dn

4�
. �11�

The functional � in Eq. �10� is not the thermodynamic po-
tential; however, for any given ��r� and A�r� Eq. �10� gives
the difference between the potentials in the superconducting

and normal states once the solutions to Eq. �1� for f and f̄ are
substituted into it.

As a first step in solving Eq. �1�, we recall that the order
parameter can be assumed as real; more precisely, the �gra-
dient of the� phase of the order parameter can be collected
together with the vector potential into a gauge-invariant
quantity. All other quantities become gauge invariant as well,
and the new vector potential is proportional to the supercur-
rent velocity. This means that in the Meissner state A must
vanish deep into the superconductor; the same holds for its
component perpendicular to the surface, as no current leaves
the superconductor. Moreover, H=Ha at the surface. These
arguments determine the boundary conditions for A; further
boundary conditions are discussed at the end of this section.
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With a real order parameter, it is convenient to introduce
the sum and difference of the anomalous Green’s functions,

s = f + f̄ , d = f − f̄ . �12�

Then, Eq. �2� can be rewritten as

g2 = 1 −
1

4
�s2 − d2� . �13�

Taking the difference between the equations in Eq. �1� and
solving for d in terms of s, we obtain

d = −
n · �s

�n
, �14�

where we introduced the short hand notation

�n = 
n − in · A . �15�

Our discussion so far is valid for any �0, but to find an
explicit expression for the thermodynamic potential as a
functional of ��r� and A�r�, we look for an approximate
solution to Eq. �1� for �0�1 and at arbitrary temperature. To
find a suitable approximate expression for s, we note that a
rescaling r→�0r only affects the gradient terms in Eq. �1�,
so that an expansion in the small parameter 1 /�0 is equiva-
lent to a gradient expansion. To zero order we neglect the
gradient terms, drop d in Eq. �13�, and using the sum of Eq.
�1� arrive at

s�0� =
2�

��n
2 + �2

,

g�0� =
�n

��n
2 + �2

, �16�

which for A=0 correctly reduce to the standard result16 for a
bulk superconductor in the absence of magnetic field. Here-
inafter, due to the above-mentioned rescaling, �0 is the unit
of length.

To calculate the next order in the expansion, we define
�see Eq. �14��

d�1� = −
1

�0

n · �s�0�

�n
. �17�

From Eq. �13� we obtain

g � g�0� + g�2�,

g�2� =
�d�1��2

8g�0� −
s�0�

4g�0�s
�2�, �18�

where s�2� is the next nontrivial order in the expansion for s
�i.e., s�s�0�+s�2��, which is again found from the sum of Eq.
�1�,

�0
2s�2� =

�

4

�n · �s�0��2

�n
2

1

Sn
+

�n · ��2s�0�

Sn
2 +

�n · ��Â
�n

n · �s�0�

Sn
2

�19�

with

Sn = ��n
2 + �2. �20�

It turns out that this expression, however, is not needed to
obtain the thermodynamic potential, as its contributions to it
cancel out. This can be checked by substituting Eqs. �12� and
�13� into Eq. �10� and using the approximate expressions in
Eqs. �16�–�18�. After an integration by parts �and dropping
the resulting surface term�, to lowest nontrivial order in the
gradient expansion, the thermodynamic potential as a func-
tional of � and A is

� = �� d3r� 1

3
�� 
 A − Ha�2 + �2 log� T

Tc
�

+� �dn���2


n
− 2���n

2 + �2 − 
n�

+
1

�0
2

��n
2 + �2

4�n
2 �n · �s�0��2
� . �21�

This expression is one of our main results and is the starting
point to study the metastability of the Meissner state; see
Sec. IV. It can be considered as an extension of the GL
approach, and as a check, we show in Sec. III A that Eq. �21�
reduces to the known GL potential in the appropriate limit. It
is interesting to compare the present result with other exten-
sions of the GL theory in the literature,19–23 where the expan-
sion is performed with respect to the covariant derivative
�i.e., the gauge-invariant operator �−2ieA�24. In the present
notation, this amounts to supplementing the already per-
formed gradient expansion with an expansion over A; at low-
est nontrivial order the published results are recovered. As
the field increases, however, A increases as well and this
additional expansion is not reliable. In the local limit consid-
ered here the order-parameter amplitude spatial profile is de-
termined primarily by the depairing effect of the supercur-
rent, which is taken into account exactly, while the additional
gradient terms are suppressed by the small parameter 1 /�0

2.25

A. Ginzburg-Landau limit

As remarked in Sec. I, the GL approach is valid near the
critical temperature. More generally, near a second-order
phase transition the order parameter is small and an expan-
sion of the thermodynamic potential in powers of the small
parameter � /2�T becomes viable. To perform this expan-
sion in the present case, we introduce the rescaled vector
potential

Ã =�2

3

A

��T�
. �22�

Here ��T� is the value of the order parameter at temperature
T in zero magnetic field, which by definition satisfies the
equation

log� T

Tc
� + 2�T


n
� 1


n
−

1

�
n
2 + ��T�2
 = 0 �23�

obtained by minimizing Eq. �21� with A=Ha=0. The expan-
sion of the above equation near Tc leads to the well-known26

approximate expression
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��T�
2�T

��2

�
�1 −

T

Tc
, �24�

where

� = 

n

1

�n + 1/2�3 = − ���1

2
� = 7��3� . �25�

The rescaling in Eq. �22� is equivalent to normalizing the
field with respect to the temperature-dependent thermody-
namic critical field rather than its zero-temperature value; the
scaling is to be applied to the external field Ha as well.
Similarly, we define the normalized order parameter

��r� =
��r�
��T�

�26�

and introduce the temperature-dependent penetration depth

��T� =
�0

��

2�T

��T�
�

�0

�2

1
�1 − T/Tc

�27�

as the unit of length. It should be stressed that all the tem-
perature dependencies introduced in this subsection are valid
only in the vicinity of the critical temperature; see also Ref.
26.

Substituting the definitions in Eqs. �22� and �26� into Eq.
�21�, expressing lengths via ��T�, and expanding in powers
of ��T� /2�T�1, the lowest-order term is

�GL = ��
�4�T�

�2�T�2� d3r�1

2
�� 
 Ã − Ha�2 −

1

2
�2 +

1

2
Ã2�2

+
1

4
�4 +

1

2�GL
2 ����2� . �28�

The GL parameter �GL is proportional to �0,

�GL =� 3

2�
�0 � 0.42�0. �29�

It can be written as the ratio

�GL =
��T�
��T�

�30�

between the temperature-dependent penetration depth �Eq.
�27�� and coherence length

��T� =�2

3

2�T

��T�
�0. �31�

Inside the curly brackets in Eq. �28� one can recognize the
GL free energy in its dimensionless form; see, e.g., Refs. 4
and 8. The last term, in particular, represents the energy as-
sociated with the spatial variation of the amplitude of the
order parameter. Due to this term the appropriate boundary
condition at the surface is ��=0, where the prime indicates
the derivative along the normal to the surface. The similar
term in Eq. �21� has a more complicated dependence on both
the order parameter and the vector potential; for this reason
the issue of the boundary condition for � demands further
investigation beyond the scope of the present work; for ex-

ample, the addition of surface terms �such as those discarded
in obtaining Eq. �21�� may be necessary; see, e.g., Ref. 27. In
what follows, however, we will concentrate on the limit �0
→�; in this case the last term in Eq. �21� is neglected, the
order parameter is determined by a “local” equation �rather
than a differential one—see Sec. IV�, and no boundary con-
ditions are required for ��r�.

IV. STABILITY CONDITION

In Sec. III we have derived an approximate expression
�Eq. �21�� for the thermodynamic potential valid at large �0.
A standard procedure can be now applied to study the prop-
erties of this functional; for example, the self-consistent
equation for � and the Maxwell equation are found by taking
the variations with respect to � and A, respectively. Consid-
ering from now on only the lowest-order contributions in
1 /�0 �i.e., neglecting the last term on the right-hand side of
Eq. �21�� and using Eq. �23�, we find

� �dn���� 1

�
n
2 + ��T�2

−
1

��n
2 + �2�
 = 0, �32�

which gives, via definition �15�, a local relation between or-
der parameter and vector potential, and

� 
 � 
 A − i� �dn�3n
�n

��n
2 + �2

= 0. �33�

Solutions to Eqs. �32� and �33� are �meta�stable only if
they are a minimum of �; i.e., if its second variation is
positive. To investigate the stability, let us parametrize � and
A as

� = �s + �, A = As + a , �34�

where �s and As satisfy Eqs. �32� and �33�. Expanding Eq.
�21� for small � and a, the second variation is

�2� = �� d3r�� �dn�� �s
2

��s
2 + �s

2�3/2 ��2 + �n · a�2�

− 2i
�s�s

��s
2 + �s

2�3/2��n · a�
 +
1

3
�� 
 a�2� �35�

with �s=
n− in ·As. In the absence of magnetic field �i.e.,
As=0� the superconducting state is stable for any T�Tc;
after integrating over n the last term in square brackets in Eq.
�35� vanishes, so that �2��0 for any fluctuation as long as
�s�0. As the field increases, however, the sign of �2�
changes, by definition, when the superheating field is
reached. Therefore, to find Hsh we look for nontrivial fluc-
tuations �, a�0 such that �2���s ,As�=0.

In the geometry under consideration �i.e., superconductor
in the x�0 half space and Ha � z�, the solution to Eqs. �32�
and �33� is parametrized as

�s = �s�x�, As = �0,Ay�x�,0� . �36�

Then, as shown by Kramer4 in the GL limit, the fluctuations
can be taken in the following form:

� = �̃�x,k�cos�ky� ,
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a = �ãx�x,k�sin�ky�, ãy�x,k�cos�ky�,0� . �37�

Substituting Eq. �37� into Eq. �35� and minimizing with re-
spect to �̃ and ãx, we find

�̃ =
G

F0
ãy , �38�

ãx =
k

3Fx + k2 ãy�, �39�

with prime denoting the differentiation with respect to x,

G =� �dn�
i�s�sny

��s
2 + �s

2�3/2 �40�

and

Fi =� �dn�
�s

2ni
2

��s
2 + �s

2�3/2 . �41�

Here n0=1 and we note the property �Fi��1. With these
definitions, we obtain for the second variation �up to a nu-
merical prefactor�

�2� � �
0

�

dx� Fx

3Fx + k2 �ãy��
2 +

F0Fy − G2

F0
�ãy�2
 . �42�

The first term on the right-hand side of Eq. �42� gives always
a positive contribution to the second variation, but as we now
argue it can be neglected in the large �0 limit. Clearly, the
larger k is the smaller this contribution becomes; on the other
hand, the second variation of the last term in Eq. �21�, which
we have neglected, would schematically contribute a �posi-
tive� term proportional to k2 /�0

2. Therefore, the optimal value
is k���0, which is in agreement with the GL result of Ref.
4, and the two terms both give contributions of �1 /�0,
which we neglect as �0→ +�. As a consequence, the super-
heating field is determined by the vanishing of the coefficient
of the second term on the right-hand side of Eq. �42�, i.e.,

F0Fy − G2 = 0. �43�

In Sec. V we use this condition together with Eqs. �32� and
�33� to calculate the superheating field.

V. SUPERHEATING FIELD

The stability analysis of Sec. IV gives a conceptually
simple procedure to find the superheating field; we should
first solve Eqs. �32� and �33� to find the profile �cf. Eq. �36��
of the �meta�stable superconducting state for a given applied
magnetic field, and then find Ha such that the condition for
the instability threshold in Eq. �43� is satisfied. The task of
solving the nonlinear differential equation �33�, however,
makes this route difficult in practice. An alternative approach
is based on the observation that the combination

Hs
2 − 3� �dn�� �s

2

��s
2 + �s

2
− 2���s

2 + �s
2 − 
n�
 , �44�

where Hs=�
As, is constant throughout the
superconductor,28 as can be checked using Eqs. �32� and

�33�. Taking into account the boundary conditions, the form
of the solution in Eq. �36�, and the expression

Hc
2�T� = 6�T


n
�2��
n

2 + ��T�2 − 
n� −
��T�2

�
n
2 + ��T�2


�45�

for the critical field, we find �cf. Ref. 3�

Ha
2 = Hc

2 + 6�T

n
�2
n +

1

A0
Im��0

��0
2 + �s0

2 �
 , �46�

where A0=Ay�0�, �0=
n− iA0, and �s0=�s�0�. The above
equation relates the applied field to the values of the order
parameter and vector potential at the surface. At the super-
heating field, these two quantities can be found by solving
the local Eqs. �32� and �43�. This can be done analytically in
the limiting cases T→Tc and T→0, as we now show.

A. Limiting cases

In the GL �T→Tc� limit Eqs. �32� and �43� reduce to,
respectively,

�s0
2 +

2

3
A0

2 = ��T�2, �47�

1

3
�s0

4 −
4

9
A0

2�s0
2 = 0. �48�

Solving these equations we find �s0=�2 /3��T�. Defining

H̃ �
Hsh

Hc
�49�

and substituting the result into the GL limit of Eq. �46�

H̃2 = 1 −
�s0

4

��T�4 , �50�

we arrive at H̃=�5 /3�0.745, which is in agreement with
Refs. 3 and 4. This is not surprising since we showed in
Sec. III A the reduction of our thermodynamic potential �Eq.
�21�� to the GL one �Eq. �28�� in this limit.

In the opposite limit T→0 and using the notation �
=�s0 /A0, Eqs. �32� and �43� become29

log��s0� = 0 �A0 � �s0� ,

log�A0�1 + �1 − �2�� − �1 − �2 = 0 ��s0 � A0 � e/2� ,

�51�

�1 − �1 − �2�
1

3
�1 − �1 − �2�1 + 2�2�� − ���1 − �2�2 = 0,

�52�

while Eq. �46� can be written as
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H̃2 = 1 −
2

3
A0

2�1

2
−

3

2
�1 − �2� + �1 − �2�3/2
 . �53�

Substitution of the solution to Eqs. �51� and �52� into the

latter expression finally gives H̃�0.840, as found in Ref. 3.

B. Temperature dependence

Having verified that the known limiting results are repro-
duced with our approach, we now consider the temperature

dependence of H̃. Near the two limiting temperatures we can
in principle calculate temperature-dependent corrections by
further expanding over the small parameters � /2�T close to
Tc and T /�0 as T→0. Instead, to obtain the behavior at
arbitrary temperature, we resort to a numerical approach.
Following the same strategy as in Sec. V A we first solve
numerically the system composed of Eqs. �32� and �43� to
find A0 and �s0; then, we substitute the result into Eq. �46�.
In this way, we obtain the curve presented in Fig. 1. Inter-

estingly, we find a nonmonotonic dependence of H̃ on tem-

perature with a maximum of H̃max�0.845 at T�0.06Tc. A
nonmonotonic behavior is also found in Hsh�T� shown in Fig.
2. Taking into account the decrease in Hc�T� with increasing
temperature, Hsh�T� acquires its maximum value of Hsh

max

�0.843Hc�0� at the lower temperature T�0.04Tc, see the
inset of Fig. 2. Since Hc

2�0�=4���0
2 depends only on mate-

rial properties, this implies that in the London limit there is
an optimal temperature at which the superheating field is the
highest possible for a given material.

VI. IMPLICATIONS FOR ACCELERATOR DESIGN

The rf cavities used in modern particle accelerators, both
for high-energy physics and as x-ray sources, are made of
superconducting niobium. The best Nb cavities are operated
in the metastable region well above Hc1. The superheating
field Hsh provides an upper bound for the maximum particle
acceleration that a given cavity can produce,12 and the oper-
ating point for the best cavities is approaching the theoretical
limit provided by the GL theory, when the latter is extrapo-
lated to the operating condition �T�0.2Tc� where it is not
valid. Niobium is not a high-� material, and our theory can-
not be directly applied to it, but Fig. 1 would indicate that at
T /Tc�0.2 the true superheating field would be 11% higher
than the GL estimate for a high-� material. A change in the
theoretical upper bound of this magnitude would have sig-
nificant implications for future attempts to improve the ma-
terial processing of existing Nb-based cavities. In principle, a
numerical solution of the linear stability problem for the
Eilenberger equations should be possible �albeit challenging�
for all values of �, including ��1—a calculation of direct
significance to current technological applications.

There are several other superconducting materials which
appear potentially promising as eventual replacements for
Nb in future accelerator applications, all of which have sig-
nificantly higher � and hence are potentially better described
by our London limit calculation. For example, if run at the
current operating temperature of 2 K, cavities made of
Nb3Sn or MgB2 would be near the peak of Hsh /Hc in Fig. 1,
and hence, our calculation would suggest a peak field 13%
higher than that provided by the GL theory. Using a current
design for the superconducting cavity, our result for Hsh sug-
gests a theoretical upper bound for the accelerating field of
200 MV/m, a factor of 4 larger than the operating fields of
the best Nb-based cavities. Material difficulties have so far
kept high-temperature copper-oxygen-based superconductors
from being useful in these applications, but new high-Tc ma-
terials, e.g., iron pnictides,30 may provide more forgiving
material properties. A quantitative estimate of the superheat-
ing field in these materials, however, may demand calcula-
tions that incorporate effects that go beyond the semiclassical
analysis of the present work. For example, a complete de-
scription of superconductivity in MgB2 requires an
Eliashberg-type calculation,31 with material properties ex-
tracted from a density-functional electronic structure
calculation.32

We point out that our result is in sharp contrast with the
commonly used heuristic Hsh�Hc /� of Yogi et al.33 This
heuristic, termed as the “line nucleation model,” is not a
linear stability calculation but an energy balance argument
that gives a nonsensical estimate Hsh�Hc1 for large �. The
formula’s success in describing experiments33 suggests that
there may be nucleation mechanisms �perhaps disorder me-
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FIG. 1. Temperature dependence of the ratio Hsh /Hc. Note the
nonmonotonic behavior with a maximum at low temperature T
�0.06Tc.
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FIG. 2. Temperature dependence of Hsh normalized by the zero-
temperature critical field. The nonmonotonic behavior with a maxi-
mum at T�0.04Tc is evident in the inset, which zooms in on the
low-temperature region.
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diated� that become more difficult to control in high-� mate-
rials but it should be viewed as an experimental extrapola-
tion, rather than a theoretical bound, in guiding the
exploration of new materials.

VII. SUMMARY AND OPEN PROBLEMS

In this paper we have revisited the problem of evaluating
the superheating field for type II superconductors, in particu-
lar with regard to its dependence on temperature. To extend
previous calculations2,4–6 based on the Ginzburg-Landau
theory, which is restricted to temperatures close to the critical
one, we have employed the semiclassical approach in order
to derive an approximate expression for the thermodynamic
potential �Eq. �21�� valid at large values of the Ginzburg-
Landau parameter ��1. From this expression we have cal-
culated, in the limit �→ +�, the temperature dependence of
the ratio between the superheating and critical fields which is
presented in Fig. 1. The relevance of our results to applica-
tions in particle accelerators is discussed in Sec. VI.

Many natural extensions of this work come to mind, be-
yond and in connection with those already mentioned in Sec.
VI. For example, it would be interesting to study in more

detail the critical variations, as done in Ref. 4 in the GL limit,
and the finite � corrections. In our calculations we have con-
sidered the simplest possible case, namely, a clean supercon-
ductor with a spherical Fermi surface. However, the semi-
classical theory can easily accommodate anisotropies in the
Fermi surface. The effect of bulk impurities can also be in-
corporated in the formalism. In superconducting cavities in
the presence of rf fields, various mechanisms for the break-
down of superconductivity are associated with characteristics
of the surface, e.g., the presence of surface impurities or
steps caused by grain boundaries.12 Moreover surface prop-
erties, namely, specular vs diffuse reflection, are known to
affect the electromagnetic response of impure
superconductors.34 Therefore, it would be important to ex-
plore theoretically the impact of surface imperfections on the
superheating field.35
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